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ABSTRACT 
The SpiNNaker system is a biologically-inspired massively 
parallel architecture of bespoke multi-core System-on-Chips. The 
aim of its design is to simulate up to a billion spiking neurons in 
(biological) real-time. Packets, in SpiNNaker, represent neural 
spikes and these travel through the two-dimensional triangular 
torus network that connects the over 65 thousand nodes housed in 
the largest size of SpiNNaker. 

The research question that we explore is the impact that spatial 
locality, temporal causality and burstiness of the traffic have on 
the performance of such interconnection network. Given the 
limited knowledge of neuron activity patterns, we propose and use 
synthetic traffic patterns which resemble biological neural traffic 
and allow tuning of spatial locality. Causality is explored by 
means of temporal patterns that maintain a specified overall 
network load while allowing at the node level autonomous causal 
traffic generation. Part of the traffic is generated automatically, 
but the remaining traffic is triggered by a spike arrival in the form 
of a packet or a burst of packets; as neural stimuli do. In this way, 
we generate non-uniform traffic patterns with an evolving 
concentration of activity at nodes which contain more active parts 
of the spiking neural network. 

Given the application domain, the simulation-based study focuses 
on the real-time behavior of the system rather than focusing on 
standard HPC network metrics. The results show that the 
interconnection network of SpiNNaker can operate without 
dropping packets with traffic loads that exceed more than 3.5 
times those required to simulate 109 spiking neurons, despite 
using non-local traffic. We also find that increments in the degree 
of traffic causality do not affect the performance of the system, 
but burstiness in the traffic can hurt performance. 
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1 INTRODUCTION 
SpiNNaker is a massively parallel architecture designed to model 
large-scale spiking neural networks in biological real-time. Its 
design is based around bespoke multi-core System-on-Chips 
which are interconnected using a two-dimensional triangular 
torus. Neural models running in the system communicate by 
means of spike events that occur when a neuron is stimulated 
beyond a given threshold and then fires. Spike events are 
communicated to all connected neurons, with typical fan-outs on 
the order of 103. Applications such as these have abundant 
parallelism and no explicit requirement to maintain consistency in 
shared memories. Another characteristic of the biological process 
is its natural resilience to failures: neurons may die, spikes may be 
missed, but the brain remains functioning appropriately. 
Furthermore, the biological process advances at very low pace 
when compared to standard electronic components: milliseconds 
versus microseconds  [4]. The design of SpiNNaker takes 
advantage of these characteristics to deploy a well-balanced, low-
power massively parallel architecture. The largest configuration 
(to be deployed by 2012) houses 216 nodes creating a system with 
over one million computing cores capable of simulating spiking 
neural networks with up to one billion (109) neurons. To put this 
number into perspective, a human brain contains approximately 
1011 neurons. 

In a previous paper  [13], we justified the interconnection network, 
characterized analytically some of its topological properties, and 
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investigated appropriate values for certain timeout parameters of 
the packet dropping mechanisms used to avoid deadlock and 
livelock. We also investigated the temporal evolution of the 
system under different levels of degradation due to faults, 
showing the suitability of a novel mechanism to keep the system 
working stably: the emergency routing. A limitation of that study 
was its reliance on plain uniform, point-to-point traffic from 
independent traffic sources. 

This paper overcomes this and carries out a more extensive 
evaluation using more complex and realistic traffic patterns. In 
particular, we explore how traffic locality, causality and 
burstiness may affect the performance figures of the 
interconnection network. 

Given the limited scientific knowledge of activity patterns in large 
biological spiking neural networks  [5] [18], we use synthetic 
traffic patterns which resemble biological neural traffic while 
allowing tuning spatial locality: from very local traffic with 
packets traveling small distances, to very distant ones in which 
packets are likely to travel across the whole network. Moreover 
we explore causality by means of temporal patterns that use a 
two-folded traffic generation scheme: independent traffic 
generation plus causal traffic generation. In other words, part of 
the traffic is generated automatically, but the remaining traffic is 
triggered by the arrival of a packet (as neural stimuli do) in the 
form of a packet or a burst of packets. 

The structure of this paper is organized as follows: Section 2 
describes the architecture of the SpiNNaker system. The 
experimental set-up of the simulation-based environment is 
discussed in Section 3. Section 4 presents and discusses the results 
of the experimental evaluation. Section 5 is devoted to discuss 
some related projects. Finally, Section 6 closes this paper with the 
main conclusions of this research work. 

2 SPINNAKER ARCHITECTURE 
SpiNNaker is a system-on-chip (SoC)-based architecture designed 
to support the real-time simulation of large networks of spiking 
neurons (up to 109). To emulate the very high connectivity of 
biological systems, SpiNNaker uses a self-timed, packet-switched 
interconnection network which gives support to efficient 

multicast, with high bandwidth and low-delay. The heart of the 
communication infrastructure is an on-chip router and the self-
timed implementation of the fabric that allows the seamless 
extension of the on-chip communications to include the inter-chip 
links. We encourage the interested reader to check  [15] for a more 
detailed description of the system at hardware level and  [7] for an 
engineering-oriented overview of biologically plausible neural 
networks applications and systems. 

2.1 SpiNNaker Node 
The basic block of the interconnection network is the SpiNNaker 
chip. It contains one multi-core SoC with 20 low-power 
ARM968S-E processing cores and one SDRAM chip. On-chip, 
each ARM core has a tightly-coupled dedicated memory that can 
hold 32KBytes of instructions and 64Kbytes of data. Processing 
units are provided with other useful modules such as the timer, the 
vector interrupt controller (VIC in the figure), the communication 
controller and the DMA controller. A conceptual representation of 
the SpiNNaker chip is depicted in Figure 1. Detailed low-level 
simulations of the chip using Verilog and SystemC confirmed that 
each of the cores is able to simulate up to around 1000 individual 
neurons  [9]. 

All the cores in a chip share a SDRAM in which synaptic 
connection information is stored. Access to this shared storage 
space is carried out by means of a self-timed NoC  [6] which is 
used to connect resources in the chip. This NoC provides higher 
communication bandwidth (8 Gbps), lower contention and lower 
consumption than any typical bus-based architecture  [16]. Each 
chip is also provided with other subsystems used for booting and 
managing purposes, which are also accessed through the NoC. 
The Boot ROM stores the minimal code to boot and verify the 
chip. The system controller is in charge of performing 
management functions at the chip level. Finally, every chip has an 
Ethernet connection that can be used for loading the application 
data  [11], managing the system from a console and also for fault-
tolerance purposes. However, given that this sub-module requires 
a dedicated core, only a few chips of the system will make use of 
this connection, being them in charge of distributing through the 
SpiNNaker interconnection network the necessary Ethernet 
received traffic. 

 

 
Figure 1. Schematic model of the SpiNNaker chip with all its 

components depicted. 

 

 

Figure 2. Architecture of the router. Black arrows represent 

links outwards from the chip. White arrows represent hard-

wired links within the chip. 



2.2 SpiNNaker Router 
A depiction of the router is shown in Figure 2. It has 20 ports for 
internal use of the ARM cores and six ports to communicate with 
six adjacent chips. All ports are full-duplex and implement self-
timed protocols. The organization within the router is hierarchical; 
ports are merged in three stages before using the actual routing 
engine. Note that the router is able to forward a single packet at 
once, but works faster than transmission ports. Therefore, most of 
the time, routers will be idle, and router delay barely affects the 
pace at which packets are processed. 

The router is designed to support point-to-point and multicast 
communications, as required by the target applications. The 
multicast engine helps reducing pressure at the injection ports, 
and, compared to a pure point-to-point alternative, it reduces 
significantly the number of packets that traverse the network. 
Information interchange is performed using small, 40-bit packets. 
It is important to indicate that routers make routing decisions 
based on the source address (neuron identifier) of the packets. 
Hence, packets do not contain any information about its 
destination(s), only the neuron that fired it. The network itself will 
deliver the packets to all chips containing neurons that have 
synaptic connections with the source neuron. These connections 
are embedded in the 1024-word routing tables inside the routers, 
and must be preloaded using application-specific information. To 
minimize the space pressure on the routing tables, these offer a 
masked associative route look-up. In addition the routers are 
designed to perform a default routing that sends the packet 
following a straight line, a process that avoids using extra entries 
in the routing tables. For example, if the packet comes from the 
North it will be sent to the South. The expected shape of the 
routes among chips is formed by two straight lines connected at a 
single inflection point to keep the number of entries in each table 
as low as possible  [10]. 

The network topology allows two-hop routes to go from a chip to 
each one of its neighbors—see Figure 3. These two-hop paths 

between neighbor nodes are known as emergency routes and may 
be invoked to bypass problematic links due to transient congestion 
states or link failures. In order to minimize chip area, the 
emergency routing mechanism implements only one of these 
turns. Our previous study  [13] showed the potential of such 
mechanism for keeping the system operating stably despite 
considering scenarios in which the interconnection network 
suffered of high number of link failures (up to 1024). 

The SpiNNaker flow-control is straightforward. When a packet 
arrives to an input port, one or more output ports are selected and 
the router tries to transmit the packet through them. If the packet 
cannot be forwarded, the router will keep trying, and after a given 
amount of time it will also test the clockwise emergency route—
both the regular and the emergency route will be checked. Finally, 
if a packet stays in the router for longer than a given threshold—a 
router parameter: waiting time—the packet will be dropped to 
avoid deadlock scenarios. To avoid livelock situations, packets 
have an age field in their header. When two ages pass and the 
packet is still in transit, it is considered as outdated and dropped. 
The ages are global to the whole system and its time-span is 
arbitrary, a system configuration parameter. Appropriate values 
for these parameters were provided in our previous study  [13]. 

Emulating the behavior of biological neural networks, dropped 
packets in SpiNNaker are not re-sent. Losing neurons (one per 
second in human brains) or signals does not impede the normal 
functioning of the biological processes; although, the dropping 
level must be kept (very) low. We consider acceptable any packet-
dropping level below one dropped packet every 106 injected. 

2.3 Interconnection Network Topology 
SpiNNaker chips are arranged in a two-dimensional triangular 
torus topology with links to the neighbors in North, South, East, 
West, Southwest and Northeast. An 8×8 instance of this topology 
is depicted in Figure 3. Note that chips at the network boundaries 
are connected by means of peripheral, wrap-around links that are 
not shown in the figure for the sake of clarity. The topological 
characteristics of the SpiNNaker interconnection network were 
analytically derived in  [13], and validated by means of simulation. 
Furthermore, in that work we computed the expected network 
utilization during regular operation of the system. This value was 
roughly a packet generation rate of 0.01 packets/cycle/node. In the 
following experiments, we represent this generation rate as RO, 
standing for Regular Operation. 

Using the 6-port router within the SpiNNaker chip, the system 
could be arranged as a three-dimensional (3D) torus, which has 
theoretically superior topological properties (e.g,. bisection 
bandwidth and distance-related characteristics) than those of the 
topology of SpiNNaker. However the topology of SpiNNaker has 
some advantageous properties: a two-dimensional system is easier 
to deploy and the diagonal links add redundancy to the design, a 
redundancy that can be exploited using the previously described 
emergency routing mechanism. Note that a three-hop emergency 
routing could be implemented in a 3D torus, but the extra chip 
area required makes it unaffordable in the context of SpiNNaker. 
It is also noticeable that routing in a 3D torus requires more 
entries in the routing tables, as regular routes are composed by 
three straight lines instead of two. This would increase the entries 
in the routing tables roughly by a 25% which may force to 
increase the number of entries in each table and, therefore, the 
chip area. In our previous paper  [13], we compared the behavior 

 

 

Figure 3. Example of an 8×8 SpiNNaker topology. Peripheral 

connections are not depicted for the sake of clarity. The 

regular route (slashed line) and the two emergency routes 

(thick arrows) between the shaded nodes are shown. 



of the two topologies, showing how the availability of the 
emergency routing tipped the scale in favor of the SpiNNaker 
topology as it provided a more stable behavior across different 
scenarios of network degradation. 

3 EXPERIMENTAL SET-UP 
We perform a simulation-based evaluation in which the main 
figure of merit is the packet dropped ratio. As explained 
previously, the application modeled by SpiNNaker tolerates some 
degree of packet loss, but it must be kept low. Any packet 
dropped ratio below 10-6 is considered acceptable. This section 
describes the environment used to collect the results. 

3.1 Model of the System 
A detailed model of the SpiNNaker interconnection network is 
implemented in INSEE, a fast, flexible and mature simulation 
environment  [17] for interconnection networks. The developed 
node model contains most of the features of the router, as well as 
the topological arrangement. In order to be able to confront 
simulations of large-scale systems, some simplifications are taken. 
We model a cycle as the time to route and forward a packet. Since 
routing is faster than transmission, the router can process several 
packets in a single cycle, provided that all the involved input and 
output ports are different. 

This study evaluates the largest configuration of the system, 
which is composed by 216 nodes arranged on a 256×256 layout. 
The model of the router includes the emergency routing and 
deadlock avoidance mechanisms (packet-dropping). The 
clockwise emergency routing is checked during the last 3 cycles 
before dropping the packet. As suggested in  [13], the waiting time 
parameter of the deadlock avoidance mechanism has been fixed to 
5 cycles.  

Regarding the routing tables, the actual system will configure 
them on a per biological network basis. As our evaluation should 
not be tied to any particular biological network, the table-based 
routing is not used, a simplification that significantly reduces the 
computing resources required to perform simulations. As the 
regular routes between chips in the actual system will attempt to 
use a minimal path with a single inflection point  [10], packets are 
sent through minimal routes using Dimension Order Routing 
(DOR). When applying DOR, the diagonal links are considered a 
third dimension (Z), therefore the routes followed by packets were 
always XY, XZ or YZ—note that a XYZ route can not be a 
minimal path. 

The nodes are modeled as independent traffic sources that inject 
packets following a Bernoulli temporal distribution, in which the 
packet injection rate (packets/cycle/node) can be tuned to any 
desired value. Furthermore we provide them with the capability to 
react to receiving a packet by generating a new packet or a burst 
of packets. We model this reactive traffic with two parameters, 
the probability to trigger a new packet (p) and the number of 
packets that are triggered (n). Given that all the ports from the 
cores inside a chip are merged, we model the whole set of cores as 
a single injection queue with room for up to four packets. If this 
queue is full and a core tries to inject, the packet is dropped 
because there is no room to store it. 

3.2 Workloads 
We propose workloads that introduce the possibility to modulate 
the locality and causality of the traffic while resembling the kind 

of workloads that will execute on SpiNNaker. In previous work 
 [10], the neuron-to-core mapping was explored with the purpose 
of increasing locality, i.e. reducing the distance among 
communicating nodes. In this paper we want to explore how 
critical the mapping of the neurons onto the system may become. 

Despitve the application model being known, there is no detailed 
biological expression describing concrete and detailed brain 
activity. For this reason, this evaluation uses Poisson distributions 
with different values of its lambda (λ) parameter to simulate the 
way packets spread through the network. Note that this is a 
comprehensible model of the kind of traffic that will be executed 
over SpiNNaker. A combination of Poisson distributions with 
different lambdas could be a more accurate model but, for the sake 
of simplicity, we will restrict the study to a single Poisson. 

For every injected packet, we first select, using the given 
distribution, the distance (number of hops) that the packet will 
traverse and then randomly select a destination node located at 
this distance. We have used seven different values for the lambda 
parameter of the Poisson distribution with the purpose of 
modeling different degrees of locality, from very local (λ=2) to 
very distant (λ=128). Figure 4 shows the distance distributions 
generated by each of the used values of λ. The greater the value of 
λ the more distant is the generated traffic. 

Uniform traffic, as the used in  [13], has no implicit bottleneck in 
its definition and, consequently, produces a balanced use of 
network resources. In contrast, the Poisson-based spatial patterns 
used in this paper do not guarantee balanced network usage and, 
therefore, bottlenecks may appear. Capturing this effect is 
desirable, as the traffic generated by the applications running on 
SpiNNaker may not (and probably will not) exhibit a balanced 
utilization of network resources. 

3.3 Experimental Methodology 
The experiments are carried out with the following methodology. 
We start with an empty network that is fed by the selected 
workload. A warm-up phase of 25K cycles is executed, after 
which a convergence phase starts in which the figures of interest 
are measured and collected every 103 cycles. Once three 
consecutive intervals are within a range of ±5% difference, the 
system is considered stable, and a statistics collection phase starts. 
In this phase the statistics are collected for 10 intervals of 104 
cycles each. In the plots we present the average values of these 10 
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intervals. As the figures of merit are captured once the system has 
converged, the standard deviations are negligible and therefore are 
not plotted. In the graphs illustrating system evolution, the 
average of each figure of merit is captured every 10 cycles, which 
allows capturing the dynamic behavior of the interconnection 
network. 

The first set of experiments uses independent traffic sources (non-
causal traffic) with a wide range of traffic generation rates;from 
0.1·RO (0.001 packets/cycle/node) to 10·RO (0.1 
packets/cycle/node). In this way, we can observe the relation 
between the degree of locality and the ratio of dropped packets. 

In the second set of experiments, we model traffic causality using 
the trigger mechanism explained previously: the reception of a 
packet can generate a single packet or a burst of them. To make 
fair comparisons we test different configurations that manage the 
same overall amount of traffic. To do so, we have to solve the 
following equation, 

∑
∞

=

⋅⋅+=
1k

kpniiG  

in which G is the desired total traffic generation rate, i is the 
independent traffic generation rate, p is the probability to trigger a 
new burst and n is the amount of packets generated in each burst. 

In this set of experiments, we fix the generation rate (G) to RO 
(0.01 packets/cycle/node) and consider different levels of causal 
generation of packets. The values of p are deliberately selected to 
generate constant values, across configurations, for the 
independent generation rate: i=0.0099, i=0.009, i=0.0075 and 
i=0.005 which correspond to 99%, 90%, 75% and 50% of the 
desired G. Thus, for the causal generation of a single packet (n=1) 
we use four different probabilities of triggering a packet: p=0.01, 
p=0.1, p=0.25 and p=0.5. Similarly, for the causal generation of a 
burst of 5 packets (n=5) we use four different probabilities of 
triggering a burst: p=0.002, p=0.02, p=0.05 and p=0.1. For the 
causal generation of a burst of 10 packets (n=10) we use: 
p=0.001, p=0.01, p=0.025 and p=0.05. Finally, for the causal 
generation of a burst of 20 packets (n=20) we use p=0.0005, 
p=0.005, p=0.0125 and p=0.025. Notice that a burst of 20 packets 
corresponds to a scenario where all the cores in the chip respond 
to a packet reception. 

These experiments study whether the causality and burstiness 
implicit in spiking neural networks can generate excessive 
injection-level contention and hurt the performance of the system. 
However, as we will see later, the system can handle the RO and 
loads that are considerably higher. Thus, to learn more about the 
behavior of the interconnection network, we also consider 
scenarios with much higher loads, which will be described later. 

4 ANALYSIS OF RESULTS 

4.1 Locality Study 
The first set of experiments in our study revolves around the 
impact that different degrees of traffic locality can have on the 
performance of the interconnection network, measured as the 
amount of packets dropped and the lowest generation rate at 
which the system is forced to drop packets. As discussed before, 
this study will provide some insights about the importance of 
neuron mapping onto the SpiNNaker system. 

Figure 5 shows the ratio of packets dropped for each 
configuration. The X-axis shows the traffic generation rate (using 
independent sources) and the Y-axis the measured ratio of 
dropped/injected packets. Values not plotted are equal to zero, 
which means that no packet is dropped. The shaded area at the left 
delimits the expected injection rates during RO. The results show 
that traffic locality has a great impact on the behavior of the 
SpiNNaker interconnection network as the load at which it is 
forced to drop packets is inversely proportional to the λ parameter. 
The system can handle all the injected traffic, regardless of their 
degree of locality, for injection rates up to 3.5·RO. For those 
distributions that do not expose very distant spatial distributions 
(λ≤32), we can see that even with a network pressure in excess of 
ten times RO, the system is able to manage the traffic without 
dropping any packet. This behavior reinforces the impression of 
robustness encountered in  [13]. 

In the experiments, we also observed that, when the network 
operates with a load either well below or well above saturation, it 
reaches the steady-state after a short transient period. When the 
load is low, the steady-state is reached after a few hundred cycles. 
Note that in such state, the system behaves perfectly: no packet is 
dropped and latencies are low. Similarly, when the network is 
working under high pressure the steady-state is reached after one 
thousand cycles. In this case, the system behavior is unacceptable: 
most of the packets are dropped and those packets that are lucky 
enough to reach their destination suffer from severe latencies 
(more than 5 times those experienced in non-saturated scenarios). 

In contrast with the rapid convergence observed in the previous 
scenarios, when the system is working at injection levels close to 
its saturation point, the temporal evolution of performance 
indicators is somewhat different. They rapidly progress, in just a 
few hundred cycles, to a phase in which the system behaves as 
non-saturated. During this phase the network operates correctly 
and is able to deliver all the injected traffic. However, after a long 
interval of several thousand cycles, the network enters into a long 
transient phase (that spans a few thousand cycles) in which the 
network starts to collapse, leading to the steady-state phase in 
which the network is severely affected by saturation. This 
behavior was not found when working with uniform traffic. Any 
unbalance introduced by the Poisson traffic generates network 
bottlenecks. The contention around these bottlenecks is eventually 
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spread to the whole network, in which case the network operates 
as severely saturated. 

The temporal evolution of the network when fed with RO load 
(non-saturated), with a load close to the previously observed 
saturation point (at 0.037 packets/cycle/node) and with a load well 
beyond the saturation point (at 0.05 packets/cycle/node) are 
plotted in Figure 6a, b and c, respectively. We limited the plot to 
the first 30 Kcycles of the simulation, with the purpose of 
allowing a clear visualization of the transient states. Three 
important performance metrics are plotted. The first one is the 
load accepted by the system, which is normalized to the provided 
load in order to allow an easy comparison of system behavior. 
The packet dropped ratio and the average delay suffered by the 

packets are also plotted. The plotted figures were captured every 
10 simulation cycles. 

Another interesting finding from these experiments is that, in 
those cases in which the network reaches saturation, the distance 
distribution computed at injection and that measured at 
consumption (considering those packets that are actually 
consumed) are noticeably different. Figure 7 shows the 
cumulative distance distribution of the system when being fed by 
the most distant traffic (λ=128), at loads below and over the 
saturation point. Three figures of merit are plotted: the first one is 
the distance distribution at injection (Di), computed as the number 
of hops in the shortest path between source and destination. The 
second is the distance distribution at consumption (Dc), also 
computed as the shortest path. Finally, the distribution of the 
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b) Temporal evolution - 256x256 SpiNNaker 
Poisson traffic at saturation point - 0.037 packets/node/cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Simulation Clock (Kcycles)

N
o
rm

a
liz

e
d
 l
o
a
d

P
a

c
k
e
t 

d
ro

p
p
e
d
 r

a
ti
o

0

200

400

600

800

A
v
g
. 
d
e
la

y
 (

c
y
c
le

s
) 

.

Normalized load

Packet dropped ratio

Average delay
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distance actually traveled by the packets, measured as the actual 
number of hops the packet traveled, is also plotted (Dt). We want 
to remark that the utilization of the emergency routing mechanism 
only affects Dt. 

Note how these three distributions are almost identical when the 
system is operating under a low load, RO in Figure 7a. In 
saturated scenarios, 10 RO in Figure 7b, the distance distribution 
at injection does not experience any change. However the distance 
distributions at consumption are noticeably different. Dc is shifted 
to the left (shorter distances) meaning that those packets that have 
to travel longer distances are more likely to be dropped. In 
contrast, Dt is shifted to the right (longer distances). This is 
because the frequent activation of the emergency routing 
mechanism, due to the saturation scenario, is reflected as an 
increase in the number of hops actually traveled by the packets. 

4.2 Causality and Burstiness Study 
The second set of experiments focuses on measuring the impact 
that traffic causality and burstiness have on the performance of 
the interconnection network. We simulate the network with causal 
traffic at RO level (0.01 packets/cycle/node). For that level of 
utilization none of the workloads forced the system to drop any 
packet. Consequently, we need to put additional stress on the 
network in order to capture the impact that the traffic properties 
have on the performance of the network. For this reason, we use 
the previously defined burst lengths (n) and probabilities of 
triggering a burst (p), and use total generation rates (G) that are 
around the point at which the traffic from independent sources 
forced the system to drop packets (0.037 packets/cycle/node). We 
only show the results for the most distant traffic (λ=128), but the 
conclusions also hold for other λ values when managing loads 
close to their corresponding saturation points. Values λ=64 and 
λ=32 were checked, but not plotted for the sake of brevity.  

Figure 8 shows the packet dropped ratio for each burst length. In 
all cases, the higher degree of causality in the traffic the lower the 
packet dropped ratio is once the system reaches saturation. This is 
inherent to the causality of the traffic because, when packets are 
dropped they do not reach their destination and, therefore, they do 
not trigger other packets. For this reason the actual generation rate 
is not as high as expected, which can be seen as a form of self-
throttling of the workload. Another important discovery is that 
traffic burstiness affects the injection rate at which the network is 
forced to drop packets. The larger the burst length and the 

probability to trigger a burst are, the lower the generation rate at 
which the network starts dropping packets. We want to remark, 
however, that the used loads are more than three and a half times 
the required one during the regular operation of the system. 

We found that traffic locality and burstiness have a noticeable 
impact on the performance of the interconnection network of 
SpiNNaker. Another interesting finding is that the causal traffic 
shelf-throttles: an increase in the number of dropped packets leads 
to the decrease of the injection rate. To conclude, we have found 
that the system is able to manage workloads that are significantly 
more demanding than those expected during the regular operation 
of the system, even in those scenarios in which the traffic 
exhibited undesirable characteristics such as a low degree of 
locality and large bursts. We can derive, hence, that the neuron-to-
node mapping while being important is not going to become a 
critical issue when simulating actual neural activity with 
SpiNNaker. 

5 RELATED WORK 
Research in simulating biologically plausible neural networks 
(brain-like systems) has remained a hot topic for the last decades. 
In the early nineties a team at U.C. Berkeley worked in the 
Connectionist Network Supercomputer  [1]. This project aimed to 
build a supercomputer specifically tailored for neural computation 
as a tool for connectionist research. The system was designed to 
be implemented as a two-dimensional mesh, with a target size of 
128 nodes (scalable to 512). Each node would incorporate a 
general-purpose RISC processor plus a vector coprocessor, 16MB 
of RAM and a router. To our knowledge, a prototype of the node 
was built (under the codename T0), but the system never operated 
as a network. Experiments using up to five nodes in a bus 
configuration were discussed in  [14].  

More recently, the Microelectronics Division at the T.U. of Berlin 
worked in a project  [12] whose objectives were similar to those of 
SpiNNaker. Part of this project is an acceleration board, called 
SSE, implemented with a collection of FPGAs interconnected via 
an on-board bus. An SEE accelerator is able to perform neural 
computations 30 times faster than a desktop PC  [8]. Other projects 
used FPGAs for similar purposes, obtaining speedups of up to 50 
compared to software-only implementations. However, as these 
boards cannot be connected to form a network, they are not able to 
scale to the magnitudes of SpiNNaker. 

a) Cumulative distance distribution 
Poisson (lambda=128) - Low load (0.01 packets/node/cycle)
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b) Cumulative distance distribution
Poisson (lambda=128) - Saturation (0.1 packets/node/cycle)
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Figure 7. Cumulative distance distribution functions measured at injection and at consumption. 

a) Network fed at RO level (non-saturated). b) Saturated network at 10·RO load. 



As far as we know, the only active project comparable to 
SpiNNaker in terms of simulation scale is the BlueBrain project 
 [2] which aims to create a biologically accurate functional model 
of the brain. However, the high complexity of its neuronal model 
does not allow it to work in real-time. In contrast with the 
biologically-inspired SpiNNaker architecture, the BlueBrain 
project does not contemplate the construction of any specific 
computing system but uses a general-purpose supercomputer, an 
IBM BlueGene  [3]. 

6 CONCLUSIONS 
This paper investigates the performance of the interconnection 
network of SpiNNaker, a system designed for real-time simulation 
of biologically plausible spiking neural networks. In particular, 
for the first time we have analyzed the impact that traffic locality 
and causality have on the real-time behavior. The system has been 
evaluated under several different scenarios using Poisson spatial 
distributions that allow tuning the degree of traffic locality, while 
being a reasonable model of the actual traffic that has to be 
supported by the system. 

Similarly to other interconnection architectures, traffic locality 
has a strong influence on the performance of SpiNNaker 
interconnection network. However, even in the case of very 
distant patterns, the network is able to manage the traffic without 
dropping packets with injection rates well above three times the 
required during regular system operation. This means that the 

neuron mapping will not become a crucial issue. Moreover, for 
those distributions that do not impose very distant communication 
the system can manage the traffic for injection times up to 10 
times the required during regular operation, which remarks the 
system robustness found in previous evaluations  [13]. 

Regarding the causality and burstiness of the traffic we have 
found that the burstiness in the generation of traffic may generate 
contention around the node that is injecting. This contention may 
lead to dropping packets at loads at which the network would 
operate flawlessly with non-causal traffic, but still significantly 
higher than the load required during the regular operation of the 
system. Another interesting property that we found is that causal 
traffic manages to self-throttle, because the dropping of packets 
leads to the reduction of the packet generation rate. 
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a) Packet dropped ratio - 256x256 SpiNNaker 
Poisson traffic with causality (1-packet bursts)
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b) Packet dropped ratio - 256x256 SpiNNaker 
Poisson traffic with causality (5-packet bursts)
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c) Packet dropped ratio - 256x256 SpiNNaker 
Poisson traffic with causality (10-packet bursts)
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d) Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic with causality (20-packet bursts)
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Figure 8. Packet dropped ratio per configuration using Poisson-spatial traffic from bursty causal sources.  

As reference, the thick grey line represents this figure when independent traffic sources are used.  

a) 1-packet bursts. b) 5-packet bursts. c) 10-packet bursts. d) 20-packet bursts. 
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